Morning coffee: multilevel drift

20170204_185122

There is an abstract account of natural selection (Lewontin 1970) where one observes that any population of entities, whatever they may be, will evolve through natural selection if (1) there is variation, that (2) affects reproductive success, and (3) is heritable.

I don’t know how I missed this before, but it recently occured to me that there must be a similarly abstract account of drift, where a population will evolve through drift if there is (1) variation, (2) that is heritable, and (3) sampling due to finite population size.

Drift may not be negligible, especially since at a higher level of organization, the population size should be smaller, making natural selection relatively less efficient.

Peerage of science, first impressions

After I wrote a post about reviewing papers, Craig Primmer suggested on Twitter that I look into Peerage of Science. Peerage of Science is a portal and community for peer review. It has a lot of good ideas. It decouples reviewing from journal submission, but it is still made for papers aimed to be published in a conventional journal. It collects reviewers and manuscripts from a different fields in one place, allows interested reviewers to select papers they want to review, and provides anonymity (if the authors want it). I once wrote a few sentences about what I thought ”optimal peer review” would be like, for a PLOS early career researchers’ travel grant. (I did not get the grant.) My ideas for better peer review were probably not that bright, or that realistic, but they did share several features with the Peerage of Science model. Naturally, I was interested.

I’ve tried reviewing for Peerage of Science for a couple of months. My first impression is that it seems to work really well. The benefits are quite obvious: I’ve seen some of the papers get more reviews than they would typically get at a journal, and the reviews usually seem no less elaborate. The structured form for reviewing is helpful, and corresponds well with what I think a good review should be like. I think I’ll stick around, look out for the notifications, and jump in when a paper is close to my interests. I really hope enough people will use Peerage of Science for it to be successful.

There are also downsides to this model:

There seems to be an uneven allocation of reviewer effort. Some papers have a lot of reviewers, but some have only one. Of course, only the people at Peerage of Science know the actual distribution of reviews. Maybe one reviewer processes are actually very rare! This is a bit like post-publication review, except that there, you can at least know who else has already commented on a paper. I know some people think that this is a good thing. Papers that attract interest also attract scrutiny, and thus reviewer effort is directed towards where it is most needed. But I think that in the ideal case, every paper would be reviewed thoroughly. This could be helped by an indicator of how many other reviewers have engaged, or at least already posted their essays.

There is also the frustration of coming late to a process where one feels the reviewers have done a poor job. This was my first experience. I joined a review process that was at its last stages, and found a short, rather sloppy review that missed most of what I thought were the important points, and belaboured what I thought was a non-issue. Too late did I realize that I could do nothing about it.

Who reviews the reviewers? The reviewers do. I see the appeal of scoring and weighting reviews. It certainly makes reviewing more of a learning experience, which must be a good thing. But I feel rather confused about what I am supposed to write as reviewer feedback. Evidently, I’m not alone, because people seem to put rather different things in the feedback box.

Since the Peerage of Science team have designed the whole format and platform, I assume that every part of the process is thought through. The feedback forms, the prompts that are shown with each step, the point at which different pieces of information is revealed to you — this is part of a vision of better peer review. But sometimes, that vision doesn’t fully make sense to me. For example, if the authors want to sign their manuscripts, Peerage of Science has the following ominous note for them:

Peerage of Science encourages Authors to remain anonymous during the review process, to ensure unbiased peer review and publishing decisions. Reviewers usually expect this too, and may perceive signed submissions as attempts to influence their evaluation and respond accordingly.

Also, I’d really really really love to be able to turn down the frequency of email notifications. In the last four days, I’ve gotten more than one email a day about review processes I’m involved in, even if I can’t do anything more until after the next deadline.

EBM 2016, Marseille

In September, I went to the 20th Evolutionary Biology Meeting in Marseille. This is a very nice little meeting. I listened to a lot of talks, had some very good conversations, met some people, and presented our effort to map domestication traits in the chicken with quantitative trait locus mapping and gene expression (Johnsson & al 2015, 2016, and some unpublished stuff).

Time for a little conference report. Late, but this time less than a year from the actual conference. Here are some of my highlights:

Richard Cordaux on pill bugs, Wolbachia and sex manipulation — I did not know that Wolbachia, the intracellular parasite superstar of arthropods, had feminization of hosts in its repertoire (Cordaux & al 2004). Not only that, but in some populations of pill bugs, a large chunk of the genome of the feminizing Wolbachia has inserted into the pill bug genome, thus forming a new W chromosome (Leclercq & al 2016, published since the conference). He also told me how this is an example of the importance of preserving genetic resources — the lines of pill bugs have been maintained for a long time, and now they’re able to return to them with genomics tools and continue old lines of research. I think that is seriously cool.

Olaya Rendueles Garcia on positive frequency-dependent selection maintaining diversity in social bacterium Myxococcus xanthus (Rendueles, Amherd & Velicer 2015) — In my opinion, this was the best talk of the conference. It had everything: an interesting phenomenon, a compelling study system, good visuals and presentation. In short: M. xanthus of the same genotype tend to cooperate, inhabit their own little turfs in the soil, and exclude other genotypes. So it seems positive frequency-dependent selection maintains diversity in this case — diversity across patches, that is.

A very nice thing about this kind of meetings is that one gets a look into the amazing diversity of organisms. Or as someone put it: the complete and utter mess. In this department, I was particularly struck by … Sally Leys — sponges; Marie-Claude Marsolier-Kergoat — bison; Richard Dorrell — stramenopile chloroplasts.

I am by no means a transposable elements person. In fact, one might believe I was actively avoiding transposable elements by my choice of study species. But transposable elements are really quite interesting, and seem quite important to genome evolution, both to neutrally evolving and occasionally adaptive sequences. This meeting had a good transposon session, with several interesting talks.

Anton Crombach presented models the gap gene network in Drosophila melanogaster and Megaselia abdita, with some evolutionary perspectives (Crombach & al 2016). A couple of years ago, Marjoram, Zubair & Nuzhdin used the gap gene network as their example model to illustrate the suggestion to combine systems biology models with genetic mapping. I very much doubt (though I may be wrong; it happens a lot) that there is much meaningful variation within populations in the gap gene network. A between-species analysis seems much more fruitful, and leads to the interesting result where the outcome, in terms of gap gene expression along the embryo, is pretty similar but the way that the system gets there is quite different.

If you’ve had a beer with me and talked about the future of quantitative genetics, you’re pretty likely to have heard me talk about how in the bright future, we will not just map variation in phenotypes, but in the parameters of dynamical models. (I also think that the mapping will take place through fully Bayesian hierarchical models where the same posterior can be variously summarized for doing genomic prediction or for mapping the major quantitative trait genes, interactions etc. Of course, setting up and running whole-genome long read sequencing will be as convenient and cheap as an overnight PCR. And generally, there will be pie in the sky etc.) At any rate, what Anton Crombach showed was an example of combining systems biology modelling with variation (between clades). I thought it was exciting.

It was fun to hear Didier Raoult, one of the discoverers of giant viruses, speak. He was somewhat of a quotation machine.

”One of the major problems in biology is that people believe what they’ve learned.”

(About viruses being alive or not) ”People ask: are they alive, are they alive? I don’t care, and they don’t care either”

Very entertaining, and quite fascinating stuff about giant viruses.

If there are any readers out there who worry about social media ruining science by spilling the beans about unpublished results presented at meetings, do not worry. There were a few more cool unpublished things. Conference participants, you probably don’t know who you are, but I eagerly await your papers.

I think this will be the last evolution-themed conference for me in a while. The EBM definitely has a different range of themes than the others I’ve been to: ESEB, or rather: the subset of ESEB I see choosing my adventure through the multiple-session programme, and the Swedish evolution meetings. There was more molecular evolution, more microorganisms and even some orgin of life research.

Morning coffee: against validation and optimization

20160924_130554

It appears like I’m accumulating pet peeves at an alarming rate. In all probability, I am guilty of most of them myself, but that is no reason not to complain about them on the internet. For example: Spend some time in a genetics lab, and you will probably hear talk of ”validation” and ”optimization”. But those things rarely happen in a lab.

According to a dictionary, to ”optimize” means to make something as good as possible. That is almost never possible, nor desirable. What we really do is change things until they work according to some accepted standard. That is not optimization; that is tweaking.

To ”validate” means to confirm to that something is true, which is rarely possible. Occasionally we have something to compare to that you are really sure about, so that if a method agrees with it, we can be pretty certain that it works. But a lot of time, we don’t know the answer. The best we can do is to gather additional evidence.

Additional evidence, ideally from some other method with very different assumptions, is great. So is adjusting a protocol until it performs sufficiently well. So why not just say what we mean?

”You keep using that word. I do not think that it means what you think it means.”

A year ago in Lund: the panel discussion at Evolution in Sweden 2016

This meeting took place on the 13th and 14th of January 2016 in Lund. It feels a bit odd to write about it now, but my blog is clearly in a state of anachronistic anarchy as well as ett upphöjt tillstånd av språklig förvirring, so that’s okay. It was a nice meeting, spanning quite a lot of things, from mosasaurs to retroviruses. It ended with a panel discussion of sorts that made me want to see more panel discussions at meetings.

The panel consisted of Anna-Liisa Laine, Sergey Gavrilets, Per Lundberg, Niklas Wahlberg, and Charlie Cornwallis, and a lot of people joined in with comments. I don’t know how the participants were chosen (Anna-Liisa Laine and Sergey Gavrilets were the invited speakers, so they seem like obvious choices), or how they were briefed; Per Lundberg served as a moderator and asked the other participants about their predictions about the future of the field (if memory serves me right).

I thought some of the points were interesting. One of Sergey Gavrilets’ three anticipated future developments was links between different levels of organisation; he mentioned systems biology and community ecology in the same breath. This sounded interesting to me, who not so secretly dreams of the day when systems biology, quantitative genetics, and populations genetics can all be brought to bear on the same phenotypes. (The other two directions of research he brought up were cliodynamics and human evolution.) He himself had, earlier in his talk, provided an example where a model of human behaviour shows the possibility of something interesting — that a kind of cooperation or drive for equality can be favoured without anything like kin or group selection. That is, in some circumstances it pays to protect the weak, and thus make sure that they bullies do not get too much ahead. He said something to the effect that now is the time to apply evolutionary biology to humans. I would disagree with that. On the one hand, if you are interested in studying humans, any time is the time. On the other hand, if the claim is that now, evolutionary biology is mature and solid, so one can go out and apply it to help other disciplines to sort out their problems … I think that would be overly optimistic.

A lot of the discussion was about Mats Björklund‘s talk about predicting evolution, or failing to do so. Unfortunately, I think he had already left, and this was the one talk of the conference that I missed (due to dull practical circumstances stemming from a misplaced wallet), so this part of the discussion mostly passed me by.

A commonplace that recurred a few times was jokes about sequencing … this or that will not be solved by sequencing thousands of genomes, or by big data — you know the kind. This is true, of course; massively parallel sequencing is good when you want to 1) make a new reference genome sequence; 2) get lots and lots of genetic markers or 3) quantify sequences in some library. That certainly doesn’t cover all of evolutionary biology, but it is still quite useful. Every time this came up part of me felt like putting my hand up to declare that I do in fact think that sequencing thousands of individuals is a good idea. But I didn’t, so I write it here where even fewer people will read it.

This is (according to my notes) what the whiteboard said at the end of the session:

”It’s complicated …”
”We need more data …”
”Predictions are difficult/impossible”
”We need more models”

Business as usual
Eventually we’ll get there (where?)
Revise assumptions, models, theories, methods, what to measure

Nothing in evolutionary biology makes sense except in the light of ecology phylogeny disease

Everything in evolution makes sense in the light of mangled Dobzhansky quotes.

(Seriously, I get why pastiches of this particular quote are so common: It’s a very good turn of phrase, and one can easily substitute the scientific field and the concept one thinks is particularly important. Nothing in behavioural ecology makes sense except in the light of Zahavi’s handicap principle etc. It is a fun internal joke, but at the same time sounds properly authoritative. Michael Lynch’s version sometimes seems to be quoted in the latter way.)

Linköping–Edinburgh–Uppsala

If you are the kind of person who reads the lists of decisions from Formas, you may already know this. In March, I’m starting a new postdoc position, in collaboration with John Hickey’s AlphaGenes group at the Roslin Institute in Edinburgh and Dirk-Jan de Koning’s group at the Swedish University of Agriculture in Uppsala, funded by a mobility starting grant for young researchers from the research council Formas. Hurrah!

The project involves using huge datasets from livestock animals to search for genes and variants underlying quantitative traits. In that sense, for me, this is both a new direction (animal breeding research) and a natural continuation (the genetic basis of quantitative traits). So, in the coming years I anticipate, among other things, learning a ton about computational quantitative genetics; meeting and working with great people; travelling more than ever (relative to my relatively low baseline); writing a poem or two about the scenic environs of Edinburgh and the Royal Mounds of Uppsala; figuring out the across-borders relationship thing; discovering new and useful things about quantitative traits; and hopefully picking up a bit of a Scottish tone in my otherwise Swenglish accent.

Linköping has been very good to me, and so have my colleagues in the Wright lab and AVIAN Behavioural Genetics and Physiology group. So, naturally, I’m both happy and sad to leave. Friends in Linköping, we will meet again.

Also, happy new year!

20170101_150010

(Me holding a sign that says (in Swedish): ”Thank you, Formas! I will do my very best.”)

Reviewing, postscript

Later the same day as the post on reviewing was published, I saw the paper by Kovanis and coworkers on the burden of peer review in biomedical literature. It’s silly of me that it didn’t occur to me to look for data on how many papers researchers review. Their first figure shows data on the number of reviews performed 2015 by Publons users:

kovanis_reviewers_figure

Figure 1B from Kovanis & al (2016) PLOS ONE (cc:by 4.0).

If we take these numbers at face value (but we probably shouldn’t, because Publons users seem likely to be a bised sample of researchers), my 4-6 reviews in a year fall somewhere in the middle: on the one hand, more than half of the researchers review fewer papers, but it’s a lot less than those who review the most.

This paper estimates the supply and demand of reviews in biomedical literature. The conclusion is lot like the above graph: reviewer effort is unevenly distributed. In their discussion, the authors write:

Besides, some researchers may be willing to contribute but are never invited. An automated method to improve the matching between submitted articles and the most appropriate candidate peer reviewers may be valuable to the scientific publication system. Such a system could track the number of reviews performed by each author to avoid overburdening them.

This seems right to me. There may be free riders who refuse to pull their weight. But there are probably a lot more of people like me, who could and would review more if they were asked to. A way for editors to find them (us) more easily would probably be a good thing.