Interaktioner mellan gener förklarar antagligen inte den saknade ärftligheten

Har fått flera tips om den här artikeln:

Asko Mäki-Tanila & William Hill (2014)  Influence of Gene Interaction on Complex Trait Variation with Multilocus Models. Genetics.

Den har en hyfsat torr titel och rätt många ekvationer och handlar om något av det intressantaste nämligen kvantitativa egenskaper och gen–gen-interaktioner. Saknad heritabilitet är ett känt genetiskt problem. Det finns flera förslag på lösningar och det är bara att välja sin favorit. Författarnas beräkningar tyder på att den antagligen inte förklaras av interaktioner mellan gener. (Varning: ganska lång och nördig bloggpost. Som vanligt.)

Vad är heritabilitet? Vi tänker oss en egenskap som varierar i en population. Om egenskapen är ärftlig kommer en del av variationen att gå i familjen. Och om vi mäter den och har ett släktträd över individerna kan vi uppskatta hur stor del av variationen som förklaras av släktskap. Detta uttrycks som varianser och kvoten mellan additiv genetisk varians och den totala variansen kallas heritabilitet. (Vadå ”additiv”? Vi kommer tillbaka till det.) Heritabiliteten är ett bråktal mellan noll och ett där ett större värde är en större ärftlig komponent.

Vad är det som saknas? Vi ska inte göra någon katalog, men det finns otaliga olika egenskaper hos växter och djur som är delvis ärftliga. Många har också gjort genetisk kartläggning (en samling tekniker som jag ofta tjatar om, bara delvis för att jag jobbar med dem) för att hitta de gener som förklarar ärftligheten och kunna undersöka hur de fungerar. Problemet är att de gener som går att hitta nästan alltid bara förklarar en liten andel av den ärftliga variationen. För nästan alla egenskaper finns det en avsevärd ”saknad heritabilitet” som måste bero på okända genetiska varianter. Den saknade delen är nästan alltid mycket större än den som förklaras av kända varianter. Exempel: Nyligen publicerades en analys av mänsklig längd baserad på 250 000 individer (Wood & al 2014). Den hittar cirka 700 genetiska varianter som tillsammans förklarar ungefär en femtedel av heritabiliteten.

Okej, så var gömmer den sig? Förmodligen är det är många varianter som bidrar med mycket små enskilda effekter. Då skulle det behövas ännu större studier för att hitta dem. I vissa egenskaper kanske det också är frågan om ovanliga varianter som bara finns i vissa familjer. I så fall skulle de inte hittas i stora populationsstudier utan drunkna i bruset. Men det finns också mer exotiska hypoteser om den saknade heritabiliteten. En är att det skulle vara epigenetisk variation snarare än genetisk (varför jag inte tror det är förklaringen borde jag skriva mer om någon annan gång). En annan är gen–gen-interaktioner, eller på genetiskt fikonspråk epistasi.

Dags att återvända till den additiva genetiska variansen. Det kan nämligen finnas en genetisk komponent som inte direkt går i arv från föräldrar till avkomma. Anlagen går i arv, naturligtvis, men avkommans egenskaper kan bli helt annorlunda om det finns interaktioner mellan olika genetiska varianter. Det blir tydligast med ett exempel med en egenskap som kan delas in i tydliga kategorier och som styrs av varianter på två gener. Det här är ett exempel från världens bästa organism, nämligen hönan.

Titta på bilden. Panel A: en vanlig enkel hönskam. Panel C: pärlkam som orsakas av en genreglerande variant i genen SOX5 (Wright & al 2009). Panel B: rosenkam, som orsakas av omflyttning som påverkar regleringen av genen NMR2 (Imsland & al 2012). Panel D: valnötskam, vilket är vad som händer de som bär båda mutationern. SOX5 och NMR2 är aktiva i samma cellpopulation i förstadiet till kammen under embroynalutvecklingen. Interaktionen mellan varianter som påverkar SOX5 och NMR2 beror förmodligen på att de ingår samma system som bygger upp kammen.

kammar_imsland

(Figur 1 från Imsland & co 2012. cc:by-3.0)

Nu är de flesta intressanta egenskaper inte så enkla och kategoriska som kamtyperna. Principen är ändå densamma. Effekten av en genetisk variant kan bero på vilka andra varianter individen bär på. Detta kallas epistasi.

Det Mäki-Tanilas & Hill tittat närmare på är vad som händer på populationsnivå. De utgår från en hyfsat realistisk situation, det finns ett antal genetiska varianter på olika gener, som alla påverkar samma egenskap. Om varianterna dessutom interagerar med varandra, vad händer med den genetiska variansen? Är den fortfarande huvudsakligen additiv, alltså sådan som går i arv från föräldrar till avkomma, eller blir det en stor icke-additv genetisk varianskomponent istället? På det hela taget så blir det oftast mest additiv genetisk varians, även om det finns interaktioner mellan varianterna.

Varför? Om vi tittar på undantagen: Interaktioner blir märkbara på populationsnivå när det är få varianter som påverkar en egenskap eller när varianterna är vanliga i populationen. Om det är många gener som påverkar egenskapen så späs interaktioneffekterna ut, men epistasi kan ha stor effekt på egenskaper med relativt enkel genetik och få gener. Sådana egenskaper verkar inte vara så vanliga, men de kan finnas. Om en av allelerna (de räknade bara på bara fallet med två alleler per gen) är ovanlig betyder det också att epistasi spelar mindre roll. Om de flesta indiver är genetiskt lika kommer det vara väldigt ovanligt att samma individ bär på flera av varianterna som krävs för att interaktionseffekten ska märkas.

Ta ett helt hypotetiskt exempel: Gen 1 har två varianter stora A och lilla a. Gen 2 ha två varianter stora B och lilla b. Varianten A gör dig i medeltal 1 mm längre. B gör dig också i medeltal 1 mm längre. Men om du råkar ha både A och B får du en extra skjuts på 2 mm, förutom den sammanlagda effekten. Men om populationens genpool nästan helt domineras av a på Gen 1 och b på Gen 2 så kommer individer med både A och B vara väldigt ovanliga. De har ingen större effekt på längdfördelningen i populationen, sådär i allmänhet. Men de gör att enskilda individer med ovanliga genotyper blir ovanligt långa.

Så, författarna hävdar att interaktioner antagligen inte förklarar den saknade heritabiliteten. Tidigare har Zuk m.fl (Zuk & al 2012) föreslagit att en förklaring skulle kunna vara att interaktioner mellan gener stör skattningen av heritabilitet. Mäki-Tanilas & Hills modell tyder på att egenskaper beter sig additivt i alla fall, så det är okej att ignorera interaktioner i heritabilitetsmätningar. Vem som har rätt beror på vilken modell som stämmer bäst med hur komplexa ärftliga egenskaper egentligen fungerar. Jag är böjd att tro att det är den senare modellen, men är inte helt säker.

Det finns en sorts motsättning om epistasi. Å ena sidan verkar egenskaper ha mycket additiv varians. Å andra sidan går det att hitta mängder av interaktioner på molekylär nivå. Gener borde interagera. Om Mäki-Tanila & Hill har rätt så har de förklaringen: det är mycket möjligt att det finns massor av epistasi, men under de vanliga förhållanden är den dominerande varianskomponenten ändå den additiva. Vi som gillar interaktioner kan äta kakan och ha den kvar.

Interaktioner är fortfarande intressanta. För att kunna förutsäga en individs egenskaper från dess genotyper behövs information om hur varianter interagerar med varandra. Det är möjligt att epistasi visar sig vara vanligt i komplexa egenskaper (som en del misstänker). Problemet är att det är så svårt att studera. Att söka efter interagerande par av gener är rutin i vissa typer av kartläggning (som de experimentkorsningar jag sysslar med) men svårare i helgenomsassociation. Jag tror inte det är någon som vet riktigt hur det ska gå till.

Kommentera

Fyll i dina uppgifter nedan eller klicka på en ikon för att logga in:

WordPress.com Logo

Du kommenterar med ditt WordPress.com-konto. Logga ut / Ändra )

Twitter-bild

Du kommenterar med ditt Twitter-konto. Logga ut / Ändra )

Facebook-foto

Du kommenterar med ditt Facebook-konto. Logga ut / Ändra )

Google+ photo

Du kommenterar med ditt Google+-konto. Logga ut / Ändra )

Ansluter till %s